Поглощение и испускание квантов света
Спонтанное и вынужденное излучения
Рассматривая поглощение и испускание фотонов, находящихся под непрерывным воздействием излучения, Эйнштейн нашел, что равновесное взаимодействие между веществом и излучением не может состоять только из актов передачи энергии от излучения веществу (поглощения) или обратной передачи от вещества к излучению (спонтанного испускания). Тогда не понятен постулат Планка о равнораспределении энергии в спектре равновесного излучения (инфракрасное излучение, например, Солнца, несет много энергии — потому греет, а более коротковолновое — меньше — от него мы загораем, но не согреваемся). Необходимо ввести еще одно излучение — вынужденное, или индуцированное внешним полем и когерентное с ним. Тогда Эйнштейн и не подозревал, что появится возможность усиления этого введенного им излучения и тем самым произойдет настоящая революция в оптике, связанная с открытием и созданием мазеров и лазеров.
Эйнштейн применил к модели атома Бора методы статистики и вывел формулу Планка для равновесного излучения. Так он стал разрабатывать статистическую квантовую теорию испускания и поглощения света отдельным атомом. Самое важное — введение вероятности для описания микрообъектов. Кроме вероятностей спонтанного и индуцированного излучений, он предположил и случайное направление вылета кванта из молекулы, которое нельзя предсказать.
Вероятность спонтанного испускания впервые ввел Резерфорд для уравнения радиоактивного распада (1900). Эйнштейн считал такой подход связанным с недостаточностью знаний о системе. Этому посвящены его споры с Бором, известные под названием: «Играл ли Бог в кости при сотворении мира?» Научное сообщество не воспринимало вероятностный подход и теорию световых квантов, что, как отметил академик А. Б. Миг-дал, отразилось в формулировке Нобелевского комитета, присудившего Эйнштейну премию по физике (1922): «за вклад в теоретическую физику и особенно за открытие законов фотоэффекта», но об открытии квантов электромагнитного поля, как и о теории относительности, не было ни слова. Восприятие новых идей происходило постепенно.
Используя в своей работе (1926) термин «фотон», Дж.Лыоис рассматривал квант света как неделимый атом. В 1927 г. состоялся
очередной Сольвеевский конгресс, в программе которого уже стояли вопросы об электронах и фотонах. Постепенно фотон был признан элементарной частицей с массой покоя, равной нулю, и со спином, равным единице.
Итак, атом может претерпеть переход с верхнего уровня на нижний благодаря спонтанному испусканию. Вероятность такого перехода в единицу времени не зависит от интенсивности поля излучения, а определяется только параметрами уровней тип, участвующих в переходе, и характеризуется коэффициентом . Вероятность вынужденного процесса в единицу времени пропорциональна плотности энергии поля излучения на резонансной частоте, которая соответствует двум атомным состояниям, участвующим в переходе. Скорость такого вынужденного испускания равна , где индекс, относящийся к плотности излучения, указывает, что здесь рассматривается случай термодинамического равновесия.
Атом в нижнем состоянии может поглощать энергию, переходя на более высокий уровень, и этот процесс аналогичен предыдущему. Скорость поглощения может быть записана в виде . Поскольку равновесие есть стационарное состояние, то между процессами, обусловливающими заселение и опустошение различных энергетических уровней, должно существовать детальное равновесие:
Используя распределение Больцмана для определения отношения заселенности уровней и формулу Планка, можно получить объяснение распределений при тепловом равновесии. Если уровень от выше уровня л, то число атомов на уровне от много меньше, чем на уровне п.
Вынужденное испускание должно иметь место при совпадении частоты падающего излучения с одной из возможных частот атомов данного сорта, — заметил в 1927 г. Дирак. В результате такого взаимодействия возбужденного атома с фотоном получаются два совершенно одинаковых фотона. Особенности вынужденного излучения — монохроматичность и когерентность.
В 1939 г. советский физик В. А. Фабрикант указал, что за счет неравновесных процессов можно сделать отношение числа частиц на возбужденном уровне к числу частиц на невозбужденном больше единицы. Такая среда, называемая инверсно-заселенной, вместо поглощения будет усиливать свет. В 1951 г. он вместе с Ф. А.Бугаевой и М.М.Вудынским получил авторское свидетельство на изобретение принципиально нового способа усиления электромагнитного излучения за счет вынужденного излучения. Система атомов (или молекул) с инверсной заселенностью уровней при наличии в системе обратной связи способна не только усиливать, но и генерировать когерентное излучение. Вскоре этот способ был реализован (сначала в диапазоне СВЧ).
Когерентность сантиметровых волн установил А. М. Прохоров в том же, 1951 г. при разработке молекулярных стандартов частоты и времени. В 1952 г. он вместе с Н. Г. Басовым сообщили на научной конференции о возможности создания усилителя и генератора излучений в СВЧ-ди
апазоне на пучке молекул аммиака в качестве активной среды. Они назвали его «молекулярным генератором». С аналогичным предложением выступил и американский физик Ч.Таунс.
Первый квантовый генератор на пучке молекул аммиака был создан в 1954 г. Н.Г.Басов, А.М.Прохоров и американский физик Ч. Та-унс в одно время предложили и осуществили обратную связь, поместив активную среду в резонатор с двумя параллельными зеркалами. Он работал на длине волны 1,25 • 10-6 м. Квантовые усилители радиодиапазона стали называть мазерами, оптического — лазерами (англ. Microwave (Light) Amplification by Stimulated Emission of Radiation) — усиление микроволнового (светового) излучения путем стимулированного или индуцированного излучения (рис. 5.10). Трехуровневый метод создания неравновесных квантовых систем, широко используемый в квантовой электронике, предложил в 1955 г. Н.Г.Басов. Принципы работы лазера разработал Ч.Таунс в 1958 г. вместе с А. Шав-ловым. Они использовали в дальнейшем лазеры для проверки тонких эффектов теории относительности и в приложениях к биологии и медицине. В 1969 г. Таунс открыл космический мазер.
Н. Г. Басову принадлежат перспективные идеи по разработке и созданию полупроводниковых лазеров, лазерного термоядерного синтеза, химических лазеров и т. д.
Первый лазер был создан американским физиком Т. Мейме-ном в 1960 г. на кристалле рубина. В том же году был создан лазер в электрическом разряде на смеси гелия и неона (А.Джован, В.Беннетт, Д. Элриот), который получил наибольшее распространение. В 1966 г. К. Пателр представил СO2 — лазер с большой выходной мощностью.
В настоящее время лазеры созданы на кристаллах, газах, пучках электронов и жидкостях. Они концентрируют излучение по направлению испускания, энергии, углу расходимости и спектральному интервалу. Фактически под любую задачу можно подобрать источник излучения с нужными свойствами.
Корпускулярно-волновые свойства вещества и значение их открытия
Синтез корпускулярных и волновых представлений предложил в 1924 г. молодой французский физик Луи Виктор де Бройль, приписав любой частице некий внутренний периодический процесс и
рассмотрев единым образом частицы вещества и света. Он развил представления Эйнштейна о двойственной природе света, распространив их на вещество. Для этого он объединил формулу Планка Е = hv и формулу Эйнштейна Е = тс2 и получил соотношение, показывающее, что любой частице при определенных массе и скорости соответствует своя длина волны. Сама волна не несет энергию, а только отображает «распределение фаз» некоего периодического процесса в пространстве. Эту фиктивную волну де Бройль назвал «фазовой волной», форма лучей которой определяется принципом наименьшего времени распространения, выдвинутого еще Ферма.
Вслед за Гамильтоном де Бройль сравнил принцип Ферма в оптике с принципом наименьшего действия в классической механике и пришел к выводу, что объединение этих экстремальных принципов должно стать основой объединения волновых и корпускулярных представлений, синтеза волн и квантов. Гамильтон подчеркивал, что дело не в том, чтобы представить себе свет как поток частиц или как волну, а в том, чтобы создать теорию, согласующуюся с опытом. Установив математическую тождественность проблем геометрической оптики и механики, он вообще игнорировал вопрос о природе света, но его оптико-механическая аналогия была началом сопоставления прерывности и непрерывности, «частицы» и «волны».
Бройль пошел дальше не только Гамильтона, но и Планка, и Эйнштейна. Соотношения Эйнштейна для световых квантов в объяснении фотоэффекта требуют сохранения
понятия частоты, поэтому сохраняются и волновые свойства света как колебательного процесса, т. е. в свойствах света присутствует двойственность. В своей гипотезе де Бройль исходил из аналогий, основанных на идее единства природы. Эйнштейн сразу понял, что здесь речь идет не просто об аналогии света и вещества. Если эта идея справедлива, то можно ожидать волнового явления и для частиц вещества, например, дифракции электронов.
Идея де Бройля была неожиданна и открывала новые свойства вещества, о которых и не подозревали. Через оптико-механическую аналогию Бройль хотел вскрыть таинственный смысл квантовых условий, введенных в элементарной теории атома Бором, Вильсоном и Зоммерфельдом. Конкретный смысл связи между величинами, характеризующими частицу и волну, сопоставляемую с частицей, связан с квантованием энергии тела, определяемой по формуле Эйнштейна Е= тс2 и преобразованиями теории относительности.
Длину волны микрочастицы де Бройль определил по аналогии с длиной волны фотона. Поскольку импульс фотона ,
то длина его волны . По определению, импульс есть произ-
ведение массы на скорость, поэтому можно ввести длину волны де Бройля . Если электрон есть волна — частица, то
стационарная орбита в атоме Бора будет определяться тем, что на ней должно укладываться целое число длин волн электрона. Это означает, что или через длину волны де Бройля можно
записать: . Это и есть первый постулат теории атома
Бора.
Оценим длину волны электрона с энергией 10 эВ. Так как Е =
10-10 м = 0,388 нм. Полученное значение длины волны сравнимо с размером атома и вместо орбит Бора ныне говорят об орбита-лях.
В 1921 г. американский физик К.Дж.Дэвиссон обнаружил, что электроны, отражаясь от никелевой пластинки, рассеиваются под определенным углом. Тогда он не сумел найти подходящего объяснения этому явлению. Но после появления работ Луи де Бройля он провел дополнительное исследование и в 1927 г. вместе с американским физиком Л.Джермером получил четкую картину рассеяния электронов, соответствующую проявлению волновых свойств, как и предсказывал де Бройль (1 эВ = 1,6 • 10-19 Дж).
Явление дифракции электронов совершенно независимо открыл примерно в это же время Дж. П.Томсон, сын Дж.Дж.Томсона, при рассеянии быстрых электронов через металлическую фольгу. По дифракционным картинам он вычислил длину волны для электронов (аналогичный опыт по дифракции медленных электронов провел в 1932 г. П. С.Тартаковский). Так был экспериментально подтвержден корпускулярно-волновoй дуализм электронов.
В 1949 г. советские ученые (Л. А. Биберман, В. А. Фабрикант, С. А. Сушков) зафиксировали дифракционные картины, полученные от очень слабых потоков электронов. Фактически от каждого из них.
После успешного обнаружения волновых свойств у электронов были проведены сложнейшие опыты по их обнаружению у атомов и молекул (Германия). Так как длина волны де Бройля равна ,
то у больших частиц она существенно меньше, но Штерн ее измерил. Впоследствии дифракционные, а значит, и волновые свойства были обнаружены у атомных и молекулярных пучков.
Вопросы для самопроверки и повторения
- Охарактеризуйте развитие представлений о свете. Как и кем было показано, что свет есть электромагнитная волна? В каких явлениях проявляются волновые свойства света?
- Охарактеризуйте дискретность и непрерывность материи. В каких явлениях проявляются корпускулярные свойства света?
- Опишите спектр электромагнитного излучения. Как были открыты и изучены инфракрасное и ультрафиолетовое излучения, рентгеновские лучи?
206
- Как законы фотоэффекта показали противоречия и кризис классической науки? Как определяется фотон? Какое давление создает излучение с длиной волны 0,6 10-6 м, если на каждый квадратный сантиметр поверхности, полностью его поглощающей, падает 3 • 1018 фотонов за 1 с?
- Каково значение открытия электрона? Какие модели строения атомов появились в начале XX в.? В какой степени атом похож на Солнечную систему? Дайте представление об энергетических уровнях и переходах.
- Что такое равновесное излучение, как оно моделируется, каковы его законы? Какие проблемы теории теплового излучения привели к «ультрафиолетовой катастрофе», предрекающей крушение «классической» физики? Какой выход был найден?
- Поясните суть гипотезы Луи де Бройля. Как она была экспериментально подтверждена, какое значение для естествознания имеет использование корпускулярно-волновых свойств вещества? Что узнали о живой материи с помощью электронного микроскопа; на каких принципах он работает?
- Поясните смысл гипотезы о дискретном характере испускания и поглощения света. Дайте представление о появлении вероятностных законов вынужденного и спонтанного испускания света.
- Поясните смысл понятия «фотон». Какие явления и каким образом были объяснены с помощью квантовой теории света? Чем такое объяснение противоречит классическому описанию?
10. Как определяют температуру звезд? Чем было доказано матери
альное единство мира?